Organización Internacional del Bambú y el Ratán

Organización Internacional del Bambú y el Ratán

Búsqueda avanzada

-
Atrás

Effect of low-concentration alkali solution pretreatment on the properties of bamboo particles reinforced poly(lactic acid) composites

Artículos

Revista/Conferencia:

JOURNAL OF APPLIED POLYMER SCIENCE

Language:

English

Autor:

Qian Shaoping; Mao Hailiang; Lu Jun; Luo Yifan; Hou Congyu

Experts:

Sheng Kuichuan

Año:

2013

Volumen:

130

Edición:

3

Número de páginas:

1667-1674

Palabras claves:

cellulose and other wood products; thermal properties; biodegradable; compatibilization; mechanical properties

Bamboo particles (BP) were treated with 0.3N (1.20 wt %) low-concentration alkali solution for different times (0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 24 h) as reinforcements in poly(lactic acid) (PLA) biodegradable composites. Characteristics of BP by composition analysis, scanning electron microscopy, Brunauer-Emmett Teller test, and Fourier transform infrared spectroscopy, showed that low-concentration alkali treatment had a significant influence on the microstructure, specific surface area, and chemical groups of BP. PLA/treated-BP and PLA/untreated-BP composites were both produced with 30 wt % BP contents. Mechanical measurements showed that tensile strength, tensile modulus, and elongation at break of PLA/BP composites increased when the alkali treatment time reached 3.0 h with maximal values of 44.21, 406.41MPa, and 6.22%, respectively. Maximal flexural strength and flexural modulus of 83.85MPa and 4.50 GPa were also found after 3.0-h alkali treatment. Differential scanning calorimetric analysis illustrated that PLA/BP composites had a better compatibility and larger PLA crystallinity after 3.0-h treatment. Overall, low concentration alkali treatment was a feasible technology in creating BP reinforced PLA composites. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1667-1674, 2013