International Bamboo and Rattan Organization

International Bamboo and Rattan Organization

Advanced search

-
Back

Comparison of hot-water extraction and steam treatment for production of high purity-grade dissolving pulp from green bamboo

Articles

Journal/Conference:

CELLULOSE

Language:

English

Author:

Luo Xiaolin; Liu Jing; Wang Haisong

Experts:

Huang Liulian; Chen Lihui

Year:

2014

Volume:

21

Issue:

3

Pages:

1445-1457

Keywords:

Prehydrolysis; Lignin condensation; Hemicellulose removal; Dissolving pulp; Green bamboo

The performance of hot-water extraction (HWE) and steam treatment (ST), followed by kraft pulping were compared for production of high purity-grade dissolving pulp from green bamboo. With the same prehydrolysis intensity (represented by the P-factor), the fractionation efficiency of HWE is far lower than that of ST. Because of lower removal of non-cellulosic components, the solid residue from HWE (even at approximately double the prehydrolysis intensity, P-factor = 1,379) required more active alkali (AA) during kraft pulping to obtain a cellulose purity equivalent to that achieved by the ST (P-factor = 756)-kraft process. To reach equivalent hemicellulose removal, HWE required more severe intensity than ST. However, FTIR and SEM characterizations of solid residue confirmed that intensified HWE resulted in significant lignin condensation. Antagonistic effects of hemicellulose removal and lignin condensation extent on subsequent kraft pulping were therefore more apparent in HWE than that in ST. Under the same kraft pulping conditions, lignin condensation from a severely intensified HWE process (P-factor = 2,020) caused greater cellulose yield and viscosity loss than that found for ST. Finally, at a given residual pentosan or lignin content, the cellulose yields from all HWE-kraft pulps were about 3 % lower than those from ST-kraft pulps. Consequently, based on an optimally setup chlorine dioxide bleaching stage, a cellulosic pulp with alpha-cellulose content of 97.6 % and viscosity of 927 mL/g was successfully produced from a ST-kraft pulp (P-factor = 756, AA = 19 %).